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Urban economic fitness 
and complexity from patent data
Matteo Straccamore 1,2,3*, Matteo Bruno 1,4, Bernardo Monechi 3 & Vittorio Loreto 1,2,3,4

Over the years, the growing availability of extensive datasets about registered patents allowed 
researchers to get a deeper insight into the drivers of technological innovation. In this work, we 
investigate how patents’ technological contents characterise metropolitan areas’ development 
and how innovation is related to GDP per capita. Exploiting worldwide data from 1980 to 2014, and 
through network-based techniques that only use information about patents, we identify coherent 
distinguished groups of metropolitan areas, either clustered in the same geographical area or similar 
in terms of their economic features. Moreover, we extend the notion of coherent diversification 
to patent production and show how it is linked to the economic growth of metropolitan areas. 
Our findings draw a picture in which technological innovation can play a key role in the economic 
development of urban areas. We contend that the tools introduced in this paper can be used to further 
explore the interplay between urban growth and technological innovation.

Modern cities are at the centre of a passionate debate about their future. With over 55% of the global popula-
tion now living in urban areas, cities represent the core of the modern world. They are important hubs for the 
production and diffusion of innovation1,2, and they play a pivotal role in the diffusion of science3 and culture4. 
The ongoing COVID-19 pandemic has placed unprecedented stress on urban infrastructure and has highlighted 
the need to rethink the role of cities in urban planning and policy decisions. While urbanisation keeps thriving 
across the world5, the challenge of understanding the development of cities to make them more sustainable and 
resilient becomes more and more crucial6,7. Even in urbanised areas that have stabilised their populations, the 
decarbonisation goal will require cities to adapt and evolve. Therefore, it is paramount to tackle urban areas’ 
challenges by going beyond pure optimisation schemes and keeping a dynamic perspective. New tools are thus 
needed to understand and map the present and forecast how a change in the current conditions will affect and 
modify future scenarios.

Despite belonging to different geographical areas and socio-economic contexts, cities possess general features 
for economic development and urbanisation rates. For example, many urban socio-economic indicators display 
power-law correlations with the population size8. Hong et al.9 observe how US cities with different sizes show a 
different kind of economic activity, with those with a population of more than 1.2 million capable of sustaining 
an innovative economy. However, cities are ever-evolving systems where several changes and different growth 
paths are possible10. Technological innovation is often highlighted as one of the main drivers for evolution and 
change in cities, and it has been shown that complex economic activities flourish in large urban areas11, although 
remote working and dispersed research teams can mitigate the concentration of innovation in urban areas12–15. 
In parallel, many studies recently focused on how innovation diffuses temporally and spatially16–18, also with 
a particular focus on cities19. In this paper, we focus on technological innovation, and we investigate how the 
technological fingerprints of cities can affect their development and potential.

For the past few decades, patent data have become a workhorse for the literature on technical change, mainly 
due to the growing availability of data about patent documents20. This ever-increasing data availability (e.g., 
PATSTAT, REGPAT and Google Patents21) has facilitated and prompted researchers worldwide to investigate 
various questions regarding the patenting activity. For example, the nature of inventions, their network structure 
and their role in explaining the technological change were broadly investigated20,22,23.

It is also important to point out the limitations of using patents as a proxy for innovation24. For instance, it 
has been argued that the disadvantage of using patents is that it is difficult to estimate their value25: there are 
many, if not most, patents with little market value, while some may be of significant value. At the same time, the 
disadvantages of patent statistics as an aggregate measure of economic and inventive activity are well known26,27. 
It should be clear that inventions do not represent all forms of knowledge production in the economy, nor do 
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patents cover all generated knowledge28. Also, patents represent only one of many knowledge indicators and do 
not capture all sectors in the economy equally29,30.

The adoption of patent data to monitor technological innovation is however  well established in the 
literature27,31,32. One of the decisive advantages of using patents is the presence of codes associated with the 
claims contained in the patent applications. These codes mark the boundaries of the commercial exclusion 
rights demanded by inventors. Claims are classified based on the technological areas they impact according to 
existing classifications (e.g., the IPC classification33) to allow the evaluation by patent offices. Mapping claims to 
classification codes allows localising patents and patent applications within the technology space. Many stud-
ies recently relied on network-based techniques to unfold the complex interplay among patents, technological 
codes and geographical reference areas. Network science techniques allowed to analyse economic activities of 
countries34, regions35–39, cities2,40–42 or firms43,44.

The purpose of this paper is to measure urban technological innovation using the Economic Fitness and 
Complexity approach and investigate its correlation with economic growth in cities, as the two have already 
been found to be related45, but we do not aim at providing a holistic description of innovation. On the contrary, 
the use of little information is the main strength of the Economic Fitness and Complexity method. Using pat-
ent data and network techniques we investigate the technological innovation processes happening in cities and, 
in general, urban areas. Similar approaches were used before for the study of local geographical technological 
spillovers. However, often the areas considered were regional35,46,47, although a similar study, restricted to US 
cities and with a different metric for complexity, was conducted by Balland and Rigby48.

We summarise our research questions as follows:
Which cities have the most advanced technological production? We use the framework of Economic Fitness and 

Complexity (FC)49 to quantify the complexity of metropolitan areas and their technological endowment. Intro-
duced initially and extensively employed for countries’ production/exports49,50, the approach can be extended 
to any bipartite system, as in our case, technological production in urban areas. This approach has been adopted 
by several different international institutions and continues to raise interest in policy-making51. Let us note that 
technological Fitness has already been used in previous studies48,52.

Are cities able to diversify their production of patents, or do they tend to specialise in particular sectors? In eco-
nomics, FC has also been applied to sub-national scales, such as regions53–55 and firms, both at a country56 and 
global57 level. The study of bipartite economic systems at different scales revealed that to apply the FC framework, 
the economic agents need to have the capability to diversify to create global competition in the system. Otherwise, 
they will try to specialise and create a nested subsystem of entities specialising in the same products. In such 
a case, the FC can capture the interplay among the economic agents, provided that the analysis is restricted to 
subsystems. In this sense, the scale of the system is fundamental and regulates the interplay between competi-
tion and specialisation. We aim to understand whether metropolitan areas can compete globally or if they tend 
to specialise.

Are there clusters of cities with similar technological baskets? Starting from a bipartite system linking metro-
politan areas and technology codes, we investigate the relations and similarities among metropolitan areas and 
uncover meaningful patterns in the evolution of their technological production. In bipartite systems, it is often 
important to understand the similarities between pairs of nodes of the same layer, to obtain a validated projec-
tion on a single layer58. We adopt this procedure to understand which metropolitan areas are more similar in the 
type of patents they produce and which patents are more likely to be produced together.

The paper is organised as follows: in “Data”, we describe the data used in this work and we go through our data 
cleaning procedure. In “Methods”, we introduce the methodologies used in our work, describing the details of the 
networks and measures we employed. In “Results”, we discuss the results showing how the network techniques 
can highlight non-trivial clusters of technologies and metropolitan areas, and how both Fitness and coherent 
diversification are linked to a higher increase in the GDPpc of metropolitan areas. Finally, “Discussion” sums up 
our contributions and hints at future work needed to address questions arising from this study.

Data
Technology codes.  Here, we shall adopt the PATSTAT database (www.​epo.​org/​searc​hing-​for-​paten​ts/​busin​
ess/​patst​at) that provides information about patents and technology codes. The database contains approximately 
100 million patents registered in about 100 Patent Offices. Each patent is associated with a code that uniquely 
identifies the patent and a certain number of associated technology codes. The WIPO (World International Pat-
ent Office) uses the IPC (International Patent Classification) standard33 to assign technology codes to each pat-
ent. IPC codes make a hierarchical classification based on six levels called digits, progressively providing more 
details about the technology used. The first digit represents the macro category: for example, the code Cxxxxx 
corresponds to the macro category “Chemistry; Metallurgy” and Hxxxxx to the macro category “Electricity”; 
considering the subsequent digits, we have, for instance, with C01xxx, the class “Inorganic Chemistry” and with 
C07xxx the class “Organic Chemistry”. We assign a year to each patent based on the first filing date.

After assigning a technology code and year to each patent, we use a database about cities (see next section) to 
match the unique patent identifier and its technology code to the corresponding city. To geolocalise the patents, 
we adopt the De Rassenfosse et al. database59 that contains entries on 18 million patents from 1980 to 2014. In this 
database, the geographical information of patents is conveniently assigned to precise geographical coordinates. 
Thus, each patent has a unique identifier, a series of technology codes, and geographical coordinates identifying 
the corresponding city. In the Supplementary Information, we describe the importance of the De Rassenfosse 
et al. work, and we summarise some useful features of this database.

http://www.epo.org/searching-for-patents/business/patstat
http://www.epo.org/searching-for-patents/business/patstat
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GDP of cities.  To obtain information on the GDP of cities and their evolution, we used the work of Kummu 
et al.60. The authors constructed a worldwide GDP grid with a resolution of about five arc minutes for the 25 
years 1990-2015. To compute the GDP per capita of each city or metropolitan area (MA) for each year in the 
data, we first download the boundaries from the Global Human Settlement Layer61. Considering the GDP grid 
in one year, we compute the GPD per capita of a MA as the average of all the grid points within its boundaries. 
In Fig. 3 in the Supplementary Information, we show the example of the grid of the Rome metropolitan area. 
In Supplementary Information also, we quantify the relative error due to the grid calculation, considering as a 
proxy the OECD GDPpc data.

Data cleaning procedure.  To clean the data, the first step is to associate the technology codes of a patent 
with a specific city. Once this preliminary operation is completed, it is possible to build the bipartite networks 
that will link cities to technology codes. We represent the bipartite networks through bi-adjacency rectangular 
matrices Vy whose elements Vy

c,t are integers indicating how many times a technology code t appeared in differ-
ent patents in a given city c in the year y. In total, our network features 42912 cities connected to 650 technology 
codes (4-digit). To reduce the difference between the two layers of the networks and reduce the noise in the sys-
tem which is often due to the presence of very small cities, we aggregate the cities in the respective metropolitan 
areas (MAs). We select all cities within a metropolitan area (MA), and the technology codes associated with the 
metropolitan area will be the union of all the technology codes of the cities within it. The MAs present in the 
Global Human Settlement Layer61 are 8641 and cover the entire world. However, most of these do not contain 
cities that have patents. The metropolitan areas producing patents are 2169 and are distributed as shown in 
Figs. 4 and 5 in the Supplementary Information.

We obtain a matrix Vy for each year y from 1980 to 2014, connecting 2169 metropolitan areas a and 650 
technology codes t. To avoid the fluctuations due to using only one year at a time as an interval, we decided 
to consider a window of 5 years each time, summing the matrices in one window. In this paper, therefore, the 
matrix Vy will refer to the time window from y to y + 5 . The final database consists of 30 5-year window matrices 
V
y ranging from window 1980− 1984 to 2010–2014. Finally, we binarise the matrices V applying a standard 

procedure in economic complexity to determine relevant producers/exporters of products (see “Revealed com-
parative advantage”).

Methods
Revealed comparative advantage.  To understand which metropolitan areas are relevant innovators of a 
specific technological sector, we apply the revealed comparative advantage (RCA)62 binarisation strategy. RCA is 
a frequently used tool in the economic complexity literature34,50,63. Considering a bipartite network of countries 
and products, RCA allows us to determine how competitive a country is in exporting a given product while also 
considering how many countries export that product. In our case, RCA reveals when the share of patents of some 
technology, t, introduced by a certain MA, a, is higher than the average share of the rest of the market, meaning 
that the metropolitan area focuses on the technology t more than the number of technologies produced would 
suggest. The RCA metric is similar to the Location Quotient64, which is used to measure the concentration of a 
certain industry in a particular region65.

Considering the matrix Vy for the year y, we define the RCA for the MA a and the technology t as:

A value RCAa,t ≥ 1 means that MA a is significantly competitive in the technology field t. We use this threshold 
on the RCA values to obtain 30 My matrices, one for each 5-year window:

Notice that, in the following, we consider only having an average of at least one RCA ≥ 1 per year, reducing their 
number to 1211. These My matrices represent our final temporal bipartite network that links 1211 MAs to 650 
technology codes.

Bipartite networks.  A bipartite network is a network whose nodes represent two different kinds of enti-
ties, and only connections between nodes from different entities are allowed. Many systems in ecological and 
socio-economical environments, such as those studied in the present work, are easily described as bipartite since 
they involve interactions between two kinds of entities56,66. For instance, the Internet can be modeled as a users-
websites bipartite network, whose analysis can reveal sets and ranks of pages that will be more likely to be of 
interest for the user67. We use the My matrices as bi-adjacency matrices of MA - technology bipartite networks, 
connecting each MA with the technologies in which it is competitive. In Fig. 1 we show a pictorial representation 
of this bipartite network and its bi-adjacency matrix My for the year y = 2000.

In bipartite systems, it is often important to study which nodes belonging to the same layer are similar. In our 
case, this means finding MAs whose basket of patents is similar or technologies that are developed in a common 
set of MAs. In order to find the similarities among MAs and technologies, we project the bipartite network onto 
its layers, obtaining two monopartite similarity networks of MAs and technologies. However, the problem of 
finding the proper projection of a bipartite network into a monopartite one representing the non-trivial simi-
larities of nodes belonging to one of its layers is well-known in the literature58,67–70. In general, the goal is to find 
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a monopartite network that best represents the bipartite one without taking too much information away from 
the latter. We decided to use the bipartite configuration model (BiCM)71,72 to select the most significant links in 
the projected networks.

Bipartite configuration model (BiCM).  One of the simplest ways to obtain a monopartite projection from bipar-
tite data is to count the number of links in common between two different entities belonging to the same layer. 
However, in the case of non-sparse real networks, this procedure often yields a densely connected projection 
with a trivial topology, not highlighting relevant patterns.

Instead, we need to keep only links representing significant similarities between nodes in our projected 
networks, to avoid obtaining a too dense projection; many algorithms have been proposed for filtering dense 
projections58,70,73. We follow the procedure described in68, using as a null model the Bipartite Configuration Model 
(BiCM)71, which we compute by using the NEMtropy Python package (github.com/nicoloval/NEMtropy)72. 
Simply put, the BiCM is a null model for bipartite networks that can be used as a tool to compare the observed 
network with the one that would be expected from the degree sequences of the nodes, i.e. the number of con-
nections of each agent in the system. Belonging to the family of maximum entropy random graphs, BiCM yields 
a maximally unbiased probability distribution over an ensemble of networks with the same number of nodes of 
the observed network. The model outputs a link probability piα for each pair of nodes i, α belonging to opposite 
layers. Then, the link probabilities can be used to sample from this ensemble, simply treating each link as a Ber-
noulli random variable with parameter piα , or to compute the expected quantities in the network. In this way, the 
properties of the observed network can be compared with the benchmark provided by the BiCM, to understand 
if the former is statistically explained by the number of connections of the agents of the system.

Network projection.  A practical application is the use of BiCM as a filter for projections of a bipartite network 
on one of its layers. We compare the observed number of shared connections V∗

ij =
∑

α MiαMjα for each pair of 
nodes i, j belonging to the same layer, to the same quantity expected by the null model. In our case, we compute 
the p-value of V∗

ij with respect to the probability distribution of the model. Then, we apply a statistical test to 
keep only the links between the pair of nodes whose respective p-value results are smaller than a statistically sig-
nificant threshold. We use the False Discovery Rate (FDR) test, which is commonly used in the case of repeated 
hypotheses testing74. The threshold of the FDR represents the statistical significance of the whole projected net-
work. This projection procedure is similar to what is also called Stochastic Degree Sequence Model75.

Applying the described method, we obtain a monopartite projection of the original bipartite network that is 
statistically significant, i.e. keeps only the relevant similarities with respect to the degrees of the nodes, unveiling 
hidden patterns. We do this to obtain networks of similarities for both MAs and technologies. In the Supple-
mentary Information, we describe the technical details of the methodology for the computation of the BiCM 
and the monopartite projection.

We apply the projection procedure for each bipartite network of MAs and technologies built for each 5-year 
time window. Then we aggregate the monopartite projections obtained for each year into a single cumulative one, 
that captures the similarities among MAs and among technologies. We perform this aggregation by summing 
all the network projection adjacency matrices for each time window. For instance, suppose node i is connected 
with j in the projection relative to 1980–1984, but node k does not appear in this network; suppose also that 
in the network of 1990–1994, i is connected with k, but j does not appear. In the merged network, we will have 
both a link between i and j and a link between i and k. We keep multiple links as weights: e.g., if two nodes are 
connected in three projected networks corresponding to three different time windows, the relative link weight 
will be 3, emphasising relevant similarities that last over time.

t1 t2 t3 t4 t5

(a)

t5t4t2t1 t3

(b)

Figure 1.   Bipartite metropolitan areas—technology codes network. (a) Pictorial representation of the bipartite 
metropolitan areas-technology codes network. Each MA is connected to one or more technology sectors. (b) 
Pictorial representation of the bipartite network adjacency matrix. A dark square means that a given technology 
code is present in a patent made by a given MA, and therefore a link is present in the bipartite network.
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Community detection.  We are interested in finding relevant communities of MAs or technologies to visualise 
better which nodes in the two layers are highly interconnected. Broadly speaking, a community is a subset of 
nodes in a network that is more densely connected than expected: for example, a group of close friends in a 
social network can be a community. To find communities in the networks of similarities obtained via the pro-
jection of the original network, we adopted the Louvain method introduced by Blondel et al.76, which relies on 
finding a partition that maximises the modularity, a very well-known quantity in complex networks. Put simply, 
modularity is a global measure of a partition of nodes in a network that captures how much the partition is able 
to describe the communities in the network. Thus, maximising modularity means finding the partition that 
captures the community structure of the network.

We also vary the resolution parameter77 in the modularity optimisation, which can be exploited to find com-
munities at different scales.

Fitness and complexity algorithm.  The fitness and complexity (FC) framework49, introduced in 2012, 
provides a way to quantify the competitiveness (Fitness) of the economy of a country. Here, we adopt it to 
quantify the Fitness of metropolitan areas considering only patent data. The idea is to define an iterative process 
linking and combining the Fitness of a MA, Fa , with the Complexity of a specific technology, Qt . The iterations 
to find these quantities are defined as:

where for each step n the quantities are normalised as:

and initial conditions Q(0)
t = 1 ∀t , F(0)a = 1 ∀a . The convergence of the algorithm has been studied extensively78. 

In our case, we compute Fya and Cy
t  for each 5-year window y starting from the bi-adjacency matrices My

at . We 
stop the iteration when the Fitness ranking of MAs does not change anymore. The rationale behind the whole 
process is as follows. A technology made in an already developed MA carries little information about the com-
plexity of the technology itself because developed metropolitan areas produce a large part of the technologies. 
In contrast, a technology exported by an underdeveloped MA must require a low level of sophistication. Thus, it 
is possible to measure a MA’s technological competitiveness given the complexity of its technologies. Instead, a 
different approach should be taken to assess product quality. Fitness Fa is proportional to the sum of technolo-
gies, weighted by their complexity Qt . Intuitively, the complexity of a technology is inversely proportional to the 
number of MAs that have implemented it. If a MA has high Fitness, this should reduce the burden of limiting 
the complexity of a technology, and MAs with low Fitness should contribute strongly to Qt.

Recent studies have shown that it is helpful to calculate the Fitness of sub-national actors using the complexity 
that comes from the national systems54,79,80. This measure is called exogenous Fitness and overcomes the issue of 
the limited capabilities of sub-national entities, such as cities or MAs in our case. This exogenous metric acts as 
an instrumental variable, to keep the results more consistent over the years and compare different sub-national 
entities, whose scale can be very different. Thus, for Fitness calculations, we use the complexity obtained by 
considering global international patent data instead of calculating the complexity of a technology only on the 
MA subsample. We proceed in the same way by aggregating all the MAs of a country, i.e., summing all the rows 
of the MAs and running the FC algorithm. In other words, we compute FC and QC relative to each country c and 
technology t through the formulas 1, and then calculate the Fitness of the MAs through:

For each time window, we calculate the Exogenous Fitness of all metropolitan areas and the complexity of each 
technology.

Coherent diversification.  The coherence of production and innovation diversification has been shown 
to be a significant driver of productivity81,82. Thus, to better understand the nature of MAs’ performance from 
their technology portfolio, we analyse their coherent diversification44. The underlying question is whether the 
accumulation of knowledge and capabilities associated with a coherent set of technologies leads MAs to experi-
ence more significant benefits in terms of GDPpc. Consistent diversification is defined as the Coherence of the 
technology field t with respect to the technology basket of the MA a:

where B can be any matrix quantifying the similarities between pairs of technologies and M is the usual adjacency 
matrix of a bipartite network between the layers of MAs and technologies. For each technological field, t, and 
each MA, a, one counts how many technologies t ′ adopted by a are connected with t, using Btt′ as a weight. If the 
technological portfolio of a is such that t is surrounded by numerous strongly connected technologies owned by 
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a, then t will be very coherent to a, and γat will be high. On the contrary, if t belongs to a portion of the network 
of technologies far from the patenting activity of a, γat will be low. In our case, we use as B matrix the projection 
represented in Fig. 2a. Notice that γ has the same dimensions as M, and the elements quantify how coherent a 
technology t is to the technology basket of MA a.

Finally, we can calculate the coherent technological diversification44 of MA, a, as:

where da =
∑

t Mat is the diversification of MA, a. The Coherence of technological diversification, Ŵa , of MA a 
computes the average Coherence γ of the technologies in which a is patenting.

Results
Networks of similarities of MAs and technologies.  To find a general network representation of our 
data for each year, we project each bipartite network of MAs and technologies, one for each 5-year window (for 
both layers of technology codes and MAs) in our dataset. Then we aggregate all the monopartite projections of 
each year to obtain a cumulative description of the similarities among the nodes. On these final similarity net-
works, we find groups of similar products by performing community detection. The detailed steps for obtaining 
the projections and finding the communities are described in the Methods section and in the SI. The resulting 
networks are shown in Fig 2.

The technology network of Fig. 2a does not show a strong modular structure due to the ability of MAs to 
produce patents in different areas, yielding instead different communities but with contiguous clusters containing 
products of similar macro-type. For instance, we can find the technology communities of (clockwise, starting 
from the left/light green) communication & information, weapons, printers, domestic technologies, cars, bicycles, 
buildings, textile, plastic, metallurgy, agri-food & mining, fuels, organic chemistry, trains, nuclear energy, and 
clocks-related technologies. Node sizes are proportional to their complexity. The cluster with the highest number 
of complex nodes is the communication & information one, pointing out that not all MAs have the necessary 
capabilities to patent in this area.

The statistically validated projection representing the similarity network of metropolitan areas shows how 
MAs can be related from the point of view of technological production, and we can see how both the location 
and the development of cities can be a factor to their similarity. We find well-defined communities of MAs that 
we can label as Chinese, emerging countries, Euro + US, Japanese + Korean MAs, car-related, high-tech. The high 
Fitness cluster related to high-tech production contains MAs such as London, New York or San Jose, while the 
community made by Western car manufacturing MAs includes for instance Turin, Detroit, Stuttgart. Interest-
ingly, the Japanese & Korean cluster shares connections with both the western, the Chinese and the emerging 
countries clusters. This last one contains MAs from Mexico, Brazil, India, Hungary, and also some metropolitan 
areas from rich countries but with a growing economy, often related to manufacturing. The Chinese clusters 

(4)Ŵa =
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t Matγat
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,
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China
Textile

Western
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Figure 2.   Monopartite projections of the metropolitan areas-technology bipartite network. (a) Technology 
network. Each node in this figure is a technology code. The size of the nodes is proportional to the complexity 
of the technology. We could identify the specific significant technologies for most clusters and represent them 
with corresponding icons in coloured circles. The Electricity and Information cluster (light green on the left) 
contains the most complex technologies. (b) Metropolitan areas network. Each node in this graph is a MA and 
each node size is proportional to the respective fitness. The high-tech cluster is the one containing the MAs with 
the highest fitnesses.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3655  | https://doi.org/10.1038/s41598-023-30649-1

www.nature.com/scientificreports/

are three, specifically one is more devoted to textile production, while the other two are close, but one contains 
generally higher Fitness metropolitan areas. We present a complete table of MAs with their class in the Sup-
plementary Information.

Fitness‑GDP relation in metropolitan areas.  In Fig. 3, we report the results regarding the relationship 
between the technology basket of MAs and their GDPpc.

We apply the Fitness and Complexity algorithm described in the Methods section: we first calculate the 
complexity of technologies at the country level and then compute the exogenous Fitness of the MAs. In Fig. 3 
we report three different representations of the GDPpc-Fitness plane. In the first (a), we trace the trajectories 
of some MAs from 1990 to 2010. Metropolitan areas with high Fitness are generally more likely to have a more 
significant increase in GDPpc. For Shanghai, for instance, the trajectory is nearly vertical, ending at a similar 
value of GDPpc as Santiago. Santiago is also an interesting case as its trajectory moves in an almost horizontal 
line increasing the Fitness but cannot improve the GDPpc quite as much as Shanghai. Other MAs, such as the 
Indian New Delhi and Kolkata, also tend to grow consistently in Fitness and GDPpc. The same phenomenology 
is mirrored in Fig. 3 panel b, where we show the average vector field of the trajectories from 1995 to 2005. From 
this plot, it emerges that metropolitan areas with a high Fitness generally show an increase in GDPpc, except for 
those that already have a very high GDPpc. Finally, in Fig. 3, panel c, we show the overall trend of all MAs whose 
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Figure 3.   The Fitness-GDPpc plane in the case of metropolitan areas and their technological production. (a) 
We trace the trajectory of some MAs from 1990 to 2010 in the Fitness-GDPpc plane. MAs with high Fitness 
show a more significant increase in GDPpc. (b) We show an average vector field of the trajectories from 1995 to 
2005. In this plot, we can better visualise how high Fitness is correlated to increases in GDPpc, most notably in 
the lower right part of the plot. In contrast, MAs with low Fitness will tend to increase it first. (c) Trends of all 
MAs, with trajectories coloured according to the community of belonging. For each community, we highlighted 
the average trajectory.
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trajectories are coloured according to the community of belonging. For each community, we highlight the average 
trajectories. The three communities of Chinese MAs are particularly interesting since they show similar trends 
of Fitness increase. The other clusters show different trends that can be easily interpreted in terms of GDPpc and 
Fitness. The High-Tech cluster has the highest average GDPpc, while the Western and Western cars ones have the 
same average GDPpc with the difference that the latter has higher Fitness. The Korea & Japan cluster has a low 
average GDPpc compared to the previous three clusters, though with a comparable Fitness. The cluster labeled 
as Emerging is slowly increasing in terms of average GDPpc and Fitness, but its increase in GDPpc seems to 
be halted, differently from the Korea/Japan one. The Fitness trends of all clusters are decreasing, except for the 
Emerging and Chinese clusters. This behaviour is justified by considering that Fitness is a globally computed 
quantity, using data about all MAs. For this reason, the Fitness cannot increase for all MAs simultaneously, and 
if it increases for some MAs, it must automatically decrease for others.

Let us note that, as highlighted by Balland et al.51, our approach is a “phenotypic” one, meaning our analysis 
and results on Fitness were obtained by using only information about metropolitan areas and patents. This, in 
general, can be a non trivial limitation because we do not perform a “genotypic” analysis, i.e. we don’t consider 
the knowledge of the capabilities to make the technologies and the processes by which MAs can use their abilities 
to produce them. This would go beyond the scope of the present work and would indeed require much more 
data; although this can be seen as a limitation, one of the most crucial points for our measure is exactly that it 
needs little data to be computed.

Fitness innovation rankings of metropolitan areas.  The metropolitan areas with the highest Fitness 
per year are presented in Fig. 4. It is remarkable, even in this case, the rise of Chinese MAs from 1990 to 2010: 
at first, only the biggest areas such as Beijing and Shanghai enter in the top 30 of the Fitness rankings. Nagoya 
(Japan) sits atop of the rankings from 1990 to 2001, then it is overtaken by the wave of Chinese cities that start to 
monopolise the top 30 shortly after 2000; in 2000 the rankings are still mixed, including many Chinese metro-
politan areas but also still many from the US and Japan. Ten years later, there are only seven metropolitan areas 
in the top 30 that are not Chinese: six of these are Korean and only one is European, Frankfurt. In 2020 Suzhou 
tops the rankings, followed by other Chinese metropolises such as Nantong, and the first non-Chinese MAs are 
the Korean Daegu and Busan, which were also at the top in the 2000 rankings.

This impressive surge of the patents made by Chinese metropolitan areas appears to have been strategically 
coordinated and aimed at rapid development and modernisation of the country, even if recent studies have deeply 
analysed and in some measure criticised the increase in China’s patenting activities83–85.

Coherent technology production.  In Fig. 5 we show the results of coherent diversification in techno-
logical production. From Fig. 5 panel a, displaying the Coherence–Fitness plane, we observe that Coherence 
correlates with a positive change in the GDPpc of MAs better than Fitness. Fig. 5 panel b confirms this picture: 
while the change in GDPpc is not sensitive to Fitness changes, a growing trend of Coherence is accompanied by a 
parallel growth in the GDPpc’s change. High Fitness MAs are generally rich and with a stable GDPpc. This result 
is appealing, especially if we consider that, in the Coherence rankings, 79 MAs out of the top 100 are Chinese. 
The coherent diversification strategy of China was already highlighted in a previous work by Gao et al.86, who 
noticed similar coherent patterns for the expansion of the production in Chinese regions. To ensure that our 
result is not simply due to the relatively high number of Chinese MAs in our dataset, we performed a robustness 
test, described in more detail in the Supplementary Information. In this test, we rebuild the technology network 
as explained in the “Networks projection” Section without the Chinese MAs, to then compute the Coherence 
using all MAs. In the Supplementary Information, we also ran a simple check to show that a high Coherence is 
not related to low diversification. In the Supplementary Information, the interested reader can find a histogram 
to show the mean Coherence of the different MA clusters.

(a) (b)

Figure 4.   The Fitness rankings of metropolitan areas. The 30 MAs with the highest Fitness are shown, along 
with the evolution from 1990 to 2000 (a) and from 2000 to 2010 (b). In 1990 many of the metropolitan areas in 
the top 30 of the Fitness rankings were from the US, Europe, Canada and Japan, with only Shanghai and Beijing 
from China in the first 20. In 2000, Chinese and Korean MAs appear in the top 30, and in 2010 they dominate 
the top of the Fitness rankings with Frankfurt as the only European, 6 Korean MAs and all others being Chinese.
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Discussion
In this work, we studied technological innovation in metropolitan areas by analysing data on patent production. 
In particular, we focused on the signals of specialisation and diversification by applying the Fitness and Com-
plexity framework and novel methods for bipartite networks to the technological production of metropolitan 
areas. The Fitness and Complexity algorithm is particularly suitable in this context because the interplay between 
specialisation and diversification can change at different scales57.

Our findings indicate that MAs tend to specialise in technology sectors, particularly for some technological 
categories, such as cars or electronics, but the biggest ones are able to diversify and some manage to be more 
generalists, although their focus shifts to complex technologies. Moreover, we observed similarities among met-
ropolitan areas within a country or across similar countries. Chinese MAs give the best example of similar MAs 
in a single country. They are organised in three coherent clusters specialised in similar technological baskets. The 
coherent diversification strategies of China are in line with previous results analysing technology spillovers in 
Chinese regions86. One of the clusters is specialising in the technology sectors of textile industries, another one 
specialises in agri-food and the third cluster is devoted to highly sophisticated technology sectors. We observe a 
similar behaviour of relatedness, though at a smaller scale, in Japanese and South-Korean MAs. Our work also 
highlighted similarities among emerging MAs and among highly technological metropolitan areas. Interestingly, 
the network of similarities among MAs shows a clear geographical boundary between highly developed Asian 
and Western (European/American) MAs.

We applied the Fitness and Complexity framework to understand the evolution of the quality in technologi-
cal innovation of MAs and their clusters. In line with previous results, we have shown that a high Fitness can 
be correlated with a high GDP per capita: MAs with a complex technological basket show higher increases in 
GDPpc in the following years than MAs developing more basic technologies. Korea and Japan followed this path, 
especially in past years. In recent years, the standout case is China: the complexity of innovation in Chinese MAs 
is very high, and their GDPpc displays rapid growth. We found that Chinese metropolitan areas are not only 
able to diversify their innovation patterns by aiming for a more complex technological basket, but also do this in 
a coherent and coordinated way. Measuring, in fact, the Coherence of the innovation baskets of MAs, we show 
that a vast majority of MAs with the highest Coherence values are Chinese, and we report that this outcome is 
not due to a restriction to a specific set of technologies. On the contrary, Chinese MAs diversify consistently and 
coherently. Moreover, a coordinated effort is also evident, with Chinese MAs areas sharing common sets of tech-
nologies. Our results indicate that coherent diversification is necessary and arguably more decisive than Fitness 
to increase the wealth of a metropolitan area, as the highest increase in GDPpc is found in metropolitan areas 
with high Coherence. Diversifying coherently appears to be the most logical path for developing metropolitan 
areas that need to expand their capabilities.

We found that from 1990 to 2010, the ranking of the top 30 MAs in patent production’s Fitness drastically 
changed. In 1990, many metropolitan areas from many rich countries were sitting at the top of the table, with 
Japan and the US vastly represented, Nagoya and Los Angeles in the top two positions, and only Beijing and 

(a) (b)

Figure 5.   Fitness VS coherence to evaluate GDPpc growth. (a) Fitness–coherence plane. We represent the 
averages of the measures over the decade 1995–2005, and the colour scale is the fractional change of GDPpc 
over the years. We observe how the Coherence allows discriminating MAs with a more significant positive 
change in GDPpc. Stars indicate the Chinese MAs. (b) Average fractional change of the GDPpc versus Fitness 
and Coherence. To highlight that Coherence correlates better with changes in GDPpc, we divide Fitness and 
Coherence into ten bins and calculate the mean fractional GDPpc variation of all the points in each of the ten 
bins. The Fitness curve is roughly constant, highlighting that Fitness cannot discriminate different fractional 
changes of the GDPpc; this is in part due to rich metropolitan areas with high Fitness and with a rather stable 
GDPpc. Coherence, instead, displays a growing trend with the fractional change of GDPpc, i.e. the higher the 
Coherence, the higher % � GDPpc.
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Shanghai as Chinese metropolitan areas. By contrast, in 2010, only seven metropolitan areas in the Fitness top 
30 rankings were not Chinese: six Korean ones and a European, Frankfurt, with the Chinese Suzhou topping 
the table.

In conclusion, our work gives new tools for analysing the patent production of metropolitan areas and cities. 
Our contribution can be summarised as follows. The application of the Fitness and Complexity framework to 
patent production provides a quantitative and a qualitative point of view on technological innovation at the scale 
of metropolitan areas. Since this methodology only considers patent production data, without making assump-
tions about external indicators, it is easy to adopt. Rankings are stable and capture both the diversification and the 
focus on more complex products. Among the most complex patents, we find technologies such as communication 
and information and nuclear energy, while among the least complex, we find mainly manufacturing technology, 
chemical products, textiles, and plastic.

Among metropolitan areas, we found many groups of similar geographical areas or similar specialisation 
patterns, with a geographical gradient going from Chinese MAs to western countries’ MAs and a set of emerging 
MAs. The most prolific patenting cities in 2010 were almost all Chinese and partly Korean, although the situation 
was very different 20 years before, with Japan, US and Europe being the most represented. The diversification 
strategies of China were proven to be very effective, and other countries, such as India, could be on their way to 
imitating them. In contrast, it might be harder for other MAs in countries with emerging economies to become 
competitive in patent production as their Fitness level is quite different.

The best strategy for metropolitan areas is to diversify coherently with their current technological knowledge. 
The growth in patent production in Chinese cities gives the best example of this phenomenon. Metropolitan 
areas with similar patent production baskets are either close geographically or focus on specific technologies in 
which they can diversify. For example, high-tech technologies can be produced only by a few MAs with a large 
set of capabilities, thus a high Fitness. Cities that produce car-related technologies are usually similar to each 
other as they are required to have a particular set of capabilities and they have high Fitness.

Future work.  The theoretical framework presented here can be applied in several scenarios we detail below.

Optimal diversification strategies and technology forecasting for MAs at different scales and capabilities.  Our 
methods can be applied to study the best diversification strategy for MAs, assessing the best technologies to 
develop in a city, as done in previous works43,87. However, the ability of a metropolitan area to diversify its tech-
nology products depends on its size and capabilities. Large MAs with resources comparable to a whole country 
can diversify as much as they wish. At the same time, smaller MAs may have different levels of resources and 
may be limited in their ability to diversify. Specialisation and diversification are both feasible ways for MAs to 
compete, depending on their resources and on whether they act more like a large firm57 or a whole country49. 
Our results add evidence to the importance of coherent diversification.

The strategy of Chinese MAs.  We found that the Chinese MAs have the most coherent technology diversification 
and specialisation strategies. These results align with previous work88, but the cause of the observed structured 
diversification remains unanswered: is this behaviour coordinated at the national level? Even though patent pro-
duction does not capture all the details of China’s growth83–85, a more detailed analysis of the Chinese case could 
highlight whether China is implementing a long-term, all-purpose strategy for developing technologies. For 
instance, whether China is implementing an a priori definition of production basket for individual MAs. If this 
is true, can the strategy be copied by other countries, and under which conditions? For instance, some emerging 
MAs, such as Indian ones, are on a trajectory similar to Chinese MAs, as shown in Fig. 3a for New Delhi.

The restricted business of car technologies.  The strong signal from MAs dedicated to producing cars is unique 
and suggests that these metropolitan areas could have trouble diversifying their production. It is not clear yet 
whether this is a signal of high competitiveness of these kinds of technologies, and therefore MAs should spe-
cialise to better profit from this production, or it is hard to implement other technologies for car-focused MAs. 
However, with the advent of electric cars and considering the significant technological changes about to occur 
in the forthcoming years (see, for instance, the European ban on fossil-fuel car production by the EU (https://​
www.​euron​ews.​com/​green/​2022/​05/​12/​eu-​wide-​ban-​on-​new-​fossil-​fuel-​cars-​to-​kick-​in-​from-​2035-​as-​lawma​
kers-​back-​propo​sal), the future economy of MAs currently producing cars will have to be reshaped. Future stud-
ies focusing on optimal diversification strategies and forecasting future technology production could be used to 
shape technology paths that can help these MAs adapt to such changes.

Data availibility
A repository of processed data and codes used can be found at: https://​github.​com/​Matte​oStra​ccamo​re/​Urban-​
Econo​mic-​Fitne​ss-​and-​Compl​exity-​from-​Patent-​Data. The datasets used in this work for patents and metro-
politan areas’ limits are publicly available. The database for patents can be found in PATSTAT (https://​data.​epo.​
org/​expert-​servi​ces/​index.​html). The geolocalisation of patents was provided by the work of De Rassenfosse 
et al.59 (https://​doi.​org/​10.​7910/​DVN/​OTTBDX). Metropolitan areas’ limits are provided by Global Human Set-
tlement Layer (https://​data.​jrc.​ec.​europa.​eu/​datas​et/​347f0​337-​f2da-​4592-​87b3-​e2597​5ec2c​95). GDP per capita 
was extracted from the work of Kummu et al.60 (https://​doi.​org/​10.​5061/​dryad.​dk1j0).
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